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ABSTRACT 

 
We investigate a prospective path to processing “big data” 
in the field of computer-aided drug design, motivated by the 
expected increase of the size of available databases. We 
argue that graph machines, which exempt the designer of a 
predictive model from handcrafting, selecting and 
computing ad hoc molecular descriptors, may open a way 
toward efficient model design procedures. We recall the 
principle of graph machines, which perform predictions 
directly from the molecular structure described as a graph, 
without resorting to descriptors. We discuss scalability 
issues in the present implementation of graph machines, and 
we describe an application to the prediction of an important 
thermodynamic property of contrast agents for MRI 
imaging.  
 

Index Terms— QSAR/QSPR, graph machine, stability, 
chelate, scale 
 

1. INTRODUCTION 
 
QSAR/QSPR (Quantitative Structure – Activity/Property 
Relationships) are two major areas of application of 
Machine Learning in computer-aided drug design. The 
purpose is the prediction of the biological activity, or of the 
physico-chemical properties, of hitherto not synthesized 
molecules, in order to avoid costly chemical syntheses and 
tests of molecules that turn out not to have the desired 
activity/property, or to have undesirable side effects. The 
traditional approach consists in designing and measuring (or 
computing ab initio) selected descriptors, that are input to a 
machine learning tool (typically neural nets or Support 
Vector Machines). In order to avoid the computationally 
costly step of designing and selecting appropriate 
descriptors, an alternative method, termed Graph Machines 
or Graph Neural Networks, has been proposed: it predicts 
the activity/property of interest from the structure of the 
molecule, described as a graph. As a result, the whole 
design procedure can be automated, from the encoding of 
the molecular structure into a graph, to the estimation of the 
generalization error of the predictive model after training. 
This opens the way to very fast model design for processing 
thousands of molecules.  

In section 2, we recall the principle of graph machine 
design, training and performance evaluation. Section 3 
describes the scalable structure that is advocated, and 
section 4 describes the promising results of a real-life 
(although not yet that “big”) application. 
 

2. GRAPH MACHINES FOR QSAR/QSPR 
 
In order to avoid costly and time consuming chemical 
syntheses of molecules that turn out not to have the desired 
activity/property, and/or to have undesirable side effects, the 
prediction of biological activities and of physico-chemical 
properties has become a major issue for speeding up the 
development of new drugs. The first QSAR/QSPR methods 
were developed in the 1970s, and machine learning 
provided a number of efficient computational tools that 
served efficiently the purposes of QSAR/QSPR. In the 
traditional approaches, descriptors of the molecules that 
were expected to be relevant for predicting the quantity of 
interest (e.g. the anti-HIV activity measured by a suitable 
index) or for performing the classification task (e.g. toxic vs. 
non-toxic), were handcrafted; they were subsequently 
computed ab initio, and used as variables of models that 
were trained from the available data. The usual steps of 
variable selection and model selection were carried out as 
usual. 

In order to circumvent the problems related to descriptor 
design and selection, methods for performing prediction or 
classification directly from a graph representation of the 
molecular structure were developed ([1]-[4]). In the present 
paper, we focus on graph machines. 
A graph machine is a composition of parameterized 
functions whose structure reflects the structure of the graph, 
so that the value taken by the function, after training, 
depends on the graph structure, and possibly on exogenous 
data. In the present application, each node of the graph is a 
non-H atom, and each edge is a bond between atoms. In 
order to take into account multiple bonds, the leaves of the 
graph contain the degree of each atom (i.e. the number of 
chemical bonds that bind it to the adjacent atoms); the 
leaves also contain a label that indicates the nature of the 
atom (i.e. carbon, oxygen, nitrogen…), in one-out-of-N code 
and possibly additional data such as stereochemical 
information. 



 

 

 

 
Figure 1 

From a planar representation to a directed acyclic graph, 
with deletion of an edge and choice of a central node (large 

dot)  
 

In order to handle acyclic graphs only, a minimum 
number of bonds are deleted if necessary, but the 
information about the existence of the deleted bonds is 
retained in the degrees of the adjacent nodes, present in the 
labels. In addition, a central node is selected [5].  

Figure 1 illustrates the steps that create the structure of a 
graph machine. The starting point is the description of the 
molecule of interest in a standard text format for describing 
molecular structures called SMILES (Simplified Molecular 
Input Line Entry Specification). It provides the planar 
representation, which is turned into an undirected, cyclic or 
acyclic, graph with appropriately labeled nodes. After 
deletion of edges and selection of the central node, a 
directed acyclic graph is constructed, where all paths in the 
graph end at the central node. 

The final step of the construction of the model consists 
in postulating a parameterized function (termed node 
function), and implementing it at each node of the graph. 
The output of a node function is one of the inputs of the 
functions of the nodes to which it is linked by an edge of the 
graph; since all paths of the graph terminate at the central 
node, the output of that node (also termed output node) is 
the output of the graph machine. Node functions may be 
polynomials, neural networks, radial basis functions, etc. All 
non-output node functions are identical within a graph 
machine and in all graph machines of the database; the 
output node function may be different from the other node 
functions, but it is the same for all graph machines of the 
database. Therefore, the number of parameters to be 
estimated during training is the number of parameters of the 

postulated node function and of the output node function. 
Figure 2 shows the final graph machine of the molecule of 
Figure 1; the triangles are the symbols of the node functions. 
The variables of each node function are (i) the labels (nature 
and degree of the atom of the node, and possibly additional 
information) and (ii) the outputs of the node functions that 
are connected to it. Because all node functions are identical, 
they must have the same number of variables, but all nodes 
do not have the same number of incoming edges; therefore, 
variables that are not used by a node are set to zero. After 
training, the output of the graph machine of a molecule 
provides a prediction of the value of the quantity of interest 
for that molecule, or, in the case of a classification problem, 
the label of the class of the molecule. 

Training is performed by minimizing the sum of the 
squared prediction errors with respect to the parameters of 
the node functions. We denote by θ  the vector of parameters 
of the postulated node function, by Θ the vector of 
parameters of the postulated output node function, and by 

  
gθ,Θ

i  the output of the graph machine pertaining to molecule 
i of the training set. We denote by yi the measured value of 
the quantity of interest for molecule i. Then the cost 
function to be minimized with respect to the parameters is: 

  
J θ,Θ( ) = yi − gθ,Θ

i( )2

i=1

N

∑ + λ1 θ + λ2 Θ , 

where λ1 and λ2 are regularization constants, and N is the 
size of the training set.  

Optimization is performed by any suitable optimization 
method (Levenberg-Marquardt, BFGS, conjugate gradient, 
etc.). If the postulated node function is a neural network, the 
gradient of the cost function can be computed by 
backpropagation; the usual weight sharing method 
guarantees that all node functions are identical. 

Complexity selection can be performed by standard 
hold-out, cross-validation, leave-one-out, or virtual leave-
one-out (a powerful, computationally efficient nonlinear 
extension of the PRESS statistic [6], [7]). 
Despite the similarity of the training and model selection 
methods of graph machines to those of standard machine 
learning regression methods such as neural networks or 
support vector regression, the concept is different in 
important respects. Standard regression methods use a single 
parameterized function, whose parameters are estimated 
from N input-output pairs. By contrast, the training set of 
graph machines comprises N different parameterized 
functions, with shared parameters that are estimated from N 
structure-output pairs. Therefore, the computational 
structures required for graph machines are different from 
those of standard nonlinear regression.  

 



 

 

 
Figure 2 

Graph machine based on the directed acyclic graph shown on Figure 1. The triangles depict the node function (e.g. a neural 
network). The nature of the non-H atoms (here C, N and O) is encoded in a 1-out-of-3 code; the thick line on one of the 

inputs expresses the fact that there are actually three (binary) inputs. The maximum number of incoming edges to a node of 
the acyclic graph of Figure 1 is three (at the central node), there are three different atoms, and one label is necessary for the 

degree, so that each node function has seven variables. No additional stereochemical descriptor is required for that molecule. 

 
3. COMPUTATIONAL STRUCTURE 

FOR GRAPH MACHINES 
 

One of the key issues in the implementation of graph 
machines is the complexity. Each molecule in the database 
is encoded into a composition of nonlinear functions whose 
numbers is equal to the number of non-H atoms of the 
molecule; the number of parameters depends on the number 
of labels and on the complexity of the node function, 
typically a few tens of parameters. Since the parameters are 
shared within each graph machine and across all graph 
machines, the number of parameters is much smaller than 
might be expected in view of the number of elementary 
functions (monomials for polynomial nodes, hidden neurons 
in the case of neural network node). As a result, the 
computational complexity is not, as is usually the case, in 
the optimization algorithm, but actually in the computation 
of the outputs of the functions and of the first order 
derivatives of these outputs with respect to the parameters. 
Therefore, the scalability of the graph machine technique is 
highly dependent on the technology used for internal 
computations.  

Our choice is based on the "just in time" computation 
(JIT) and its implementation in the recent versions of the 
Python language. As mentioned above, a graph machine is a 
composition of node functions. For each of them, we create 
"on the fly" a set of optimized C-coded files describing the 
computation of the functions of interest for training 

(computation of the graph machine output and computation 
of its derivatives with respect to the parameters); these files 
are compiled, also "on the fly", into object files (Figure 3). 

This results in a set of object files, one for each graph of 
the database. These files are linked together (with a 
negligible computational overhead) to create a binary library 
that can compute a vector of outputs and a jacobian matrix 
for a given set of parameters (Figure 4). The key factor in 
the reduction of computation time is the fact that the code 
generated from the model structure, and compiled “on the 
fly”, is fully dedicated to the model of interest, hence very 
simple. By contrast, conventional implementations use 
general-purpose codes, which are more flexible but more 
computationally demanding – a situation similar to custom 
hardware vs. general-purpose circuits. Our approach leads to 
a decrease of computation time by two to three orders of 
magnitude, as illustrated in the next section. 

 
4. ILLUSTRATIONS 

 
The above methods are illustrated by the prediction of two 
physico-chemical properties: the stability constant of 
chelates used as contrast agent in Magnetic Resonance 
Imaging, and the octanol-water partition coefficient of 
organic molecules. 

 
 



 

 

 
Figure 3 

From graph to object file, “just in time” computation. 

 

 
Figure 4 

Linking object files to build a binary module. 

 
4.1. Prediction of the stability constants of gadolinium 
chelates. 
 
Magnetic Resonance Imaging (MRI) is a widely used, non-
invasive technique in medical imaging and biomedical 
research. One of its main advantages over X-ray imaging is 
its applicability to the study of soft tissues, while X-ray are 
useful for examining bone conditions, as X-rays are strongly 
absorbed by bones. In order to improve the contrast between 
normal and diseased tissues in MRI images, it is customary 
to inject paramagnetic substances. Among them, gadolinium 
(Gd) in its ionic form Gd3+ is the most frequently used [8]. 
Unfortunately, free Gd3+ is toxic, so that it is necessary to 
sequester it into a molecular cage (the ligand) by forming 
strong bonds between the active cation and the ligand; the 
metal-ligand complex thus formed is a chelate, which must 
remain stable in the body and be excreted intact. Figure 5 

 

 
Figure 5 

3-D (left) and planar (right) structures of a typical chelate; 
red spheres: oxygen atoms; blue: nitrogen atoms; grey: 

carbon atoms; green: chelated Gd3+ ion. 

 
shows the 3-D structure of a chelate and the 2-D structure of 
its ligand; the non covalent bonds between the Gd3+ ion 
(green sphere) and the N and O atoms (blue and red 
respectively) of the ligand are clearly visible, together with 
the O atom of a water molecule (top red sphere).  

The higher the thermodynamic stability of a metal 
complex used as a pharmaceutical drug, the lower its 
toxicity; the thermodynamic stability constant of a 
gadolinium(III) complex (Ktherm or KGdL) is useful to assess 
the amount of free Gd3+ or free ligand in a water solution. 
As the values of the stability constants span several orders 
of magnitude, they are almost always expressed in log K 
units in publications, databases and handbooks (the same 
holds true for the values of the octanol-water partition 
coefficient logP, discussed in section 4.2). 

A lot of effort is devoted to finding new gadolinium-
based contrast agents with improved performance. 
Therefore, it is crucial to develop new contrast agents with 
very high stability constants. The rationale for using 
machine learning to estimate the stability constant of Gd3+ 
chelates with yet non synthesized ligands stems from the 
fact that the experimental determination of these 
thermodynamic constants is long and tedious, so that the 
development of a computational predictive method is very 
likely to speed up the design of new, efficient ligands. 

In an investigation of the prediction of stability constants 
of contrast agents for MRI, an exhaustive database of 158 
Gd3+ chelates was built [9]. 109 of them were used as a 
training/validation set, 12 of them built up the test set, and 
37 ligands were used as an application set of molecules with 
questionable or yet non-existent experimental values of log 
KGdL. Figure 6 shows that the scatter plot of the virtual 
leave-one-out predictions on the training set (dots) and on 
the test set (squares), together with ±10% prediction RMS 
error lines. The prediction error being on the order of the 
experimental measurement error, the results are very 
satisfactory. A detailed discussion of the chemical 
significance of the result is provided in [9]. 

Graph machine predictions were performed both with a 
conventional implementation of graph machines, and with 
the implementation described in section 3, on the same 
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Figure 6 

Virtual leave-one-out estimates of log KGdL for the 109 
compounds of the training/validation set (●), and estimates 
for the 12 compounds of the test set (n), vs. experimental 
values of log KGdL. The coefficient of determination R2 has 

the same value (within three digits) for both sets. The 
regression line for the VLOO estimates and the bisector are 

not distinguishable. 
 
 machines. The new implementation resulted in an average 
reduction of computation time by a factor of 300. 

 
4.2. Prediction of the octanol-water partition coefficient 
of organic molecules. 
 
The octanol-water partition coefficient of a molecule (logP) 
is the log of the ratio of its equilibrium concentration in 
octanol to its equilibrium concentration in water (water and 
octanol are immiscible). Therefore, it describes how 
hydrophilic (or hydrophobic) a molecule is: the higher its 
hydrophilicity, the lower its logP value; the higher its 
hydrophobicity, the higher its logP value. This is a key 
figure for pharmaceutical applications, because it is 
important in estimating how a drug is distributed in the 
body. 

A drug that is administered orally must enter the blood 
circulation system by passing through the intestinal 
epithelium, which requires that the molecule is hydrophobic 
enough. In addition, hydrophobic effects are important for 
the binding of drugs to their targets. For all the above 
reasons, the prediction of logP is of major interest for 
computer-aided drug design, and traditional, descriptor-
based machine learning methods have been applied 
extensively (for a review, see [10] and references therein). 

A database of 1,800 molecules (from 2 to 52 non-H 
atoms per molecule) with known values of logP [11] was 
used for investigating the scaling of computation times with 

the size of the training set, for different numbers of 
parameters corresponding to neural network node functions, 
with three to seven hidden neurons. All experiments were 
performed on a quad-core i7-2600 @3.6 GHz. Figure 7 
shows that the computation time necessary for the 
construction of the graph machines increases linearly with 
the size of the training set in the range investigated. 
Similarly, the computation time increases linearly with the 
number of parameters, for a given size of the training set. It 
must be noted that this computation is performed only once 
for a given molecule: if another property of the same 
molecule is to be predicted, this step is not repeated. In 
addition, if a multicore machine is used, each core may be 
assigned a separate set of molecules, as a graph machine is 
constructed independently from the others. 

By contrast, the graph machines must be trained 
specifically for each property. However, the training time is 
much smaller than the time required for building the graph 
machines. Figure 8 shows the computation time for training 
the graph machines by 250 epochs of the Levenberg-
Marquardt algorithm. Linear scaling is observed again. 

For molecules of the size and complexity indicated 
above, the new implementation divides the construction 
time by 1.5 and the training time (node function with 5 
hidden neurons, 250 epochs of Levenberg-Marquardt 
optimization) by 1,200.  

 
5. CONCLUSION 

 
The results presented here show that graph machines can be 
conveniently implemented in an efficient way, so as to be 
used on large databases without resorting to high-
performance hardware or grid computing, given the present 
size of available databases. However, due to the current 
interest in capitalizing as much as possible on publicly 
available databases in chemistry will grow more and more 
rapidly. Therefore, it is important to find scalable 
implementations QSAR/QSPR methods, as illustrated in the 
present article. 

Interestingly, there is room for a lot of improvement in 
computational efficiency, especially with the use of 
multicore machines for the construction of the graphs of 
molecules, which has become the most time-consuming step 
for graph machine prediction if a single property is to be 
predicted. If several properties of the same molecule are to 
be predicted, the construction of the graphs is performed 
only once, which is a particularly attractive feature of graph 
machines.  
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Figure 7 

Computation time vs. number of molecules in the training 
set for the construction of graph machines of different node 

function complexities (number of parameters). 

 

 
Figure 8 

Training time (Levenberg-Marquardt optimization, 250 
epochs) vs. number of molecules in the training set. 
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