

978-1-4799-3694-6/14/$31.00 ©2014 IEEE

2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

TOWARD BIG DATA IN QSAR/QSPR

A. Duprat1, J.L. Ploix1, F. Dioury2, G. Dreyfus1 FIEEE

1SIGnal processing and MAchine learning (SIGMA) lab, ESPCI ParisTech, Paris, France

2Equipe Chimie Moléculaire, Laboratoire CMGPCM, Cnam, Paris France

ABSTRACT

We investigate a prospective path to processing “big data”
in the field of computer-aided drug design, motivated by the
expected increase of the size of available databases. We
argue that graph machines, which exempt the designer of a
predictive model from handcrafting, selecting and
computing ad hoc molecular descriptors, may open a way
toward efficient model design procedures. We recall the
principle of graph machines, which perform predictions
directly from the molecular structure described as a graph,
without resorting to descriptors. We discuss scalability
issues in the present implementation of graph machines, and
we describe an application to the prediction of an important
thermodynamic property of contrast agents for MRI
imaging.

Index Terms— QSAR/QSPR, graph machine, stability,
chelate, scale

1. INTRODUCTION

QSAR/QSPR (Quantitative Structure – Activity/Property
Relationships) are two major areas of application of
Machine Learning in computer-aided drug design. The
purpose is the prediction of the biological activity, or of the
physico-chemical properties, of hitherto not synthesized
molecules, in order to avoid costly chemical syntheses and
tests of molecules that turn out not to have the desired
activity/property, or to have undesirable side effects. The
traditional approach consists in designing and measuring (or
computing ab initio) selected descriptors, that are input to a
machine learning tool (typically neural nets or Support
Vector Machines). In order to avoid the computationally
costly step of designing and selecting appropriate
descriptors, an alternative method, termed Graph Machines
or Graph Neural Networks, has been proposed: it predicts
the activity/property of interest from the structure of the
molecule, described as a graph. As a result, the whole
design procedure can be automated, from the encoding of
the molecular structure into a graph, to the estimation of the
generalization error of the predictive model after training.
This opens the way to very fast model design for processing
thousands of molecules.

In section 2, we recall the principle of graph machine
design, training and performance evaluation. Section 3
describes the scalable structure that is advocated, and
section 4 describes the promising results of a real-life
(although not yet that “big”) application.

2. GRAPH MACHINES FOR QSAR/QSPR

In order to avoid costly and time consuming chemical
syntheses of molecules that turn out not to have the desired
activity/property, and/or to have undesirable side effects, the
prediction of biological activities and of physico-chemical
properties has become a major issue for speeding up the
development of new drugs. The first QSAR/QSPR methods
were developed in the 1970s, and machine learning
provided a number of efficient computational tools that
served efficiently the purposes of QSAR/QSPR. In the
traditional approaches, descriptors of the molecules that
were expected to be relevant for predicting the quantity of
interest (e.g. the anti-HIV activity measured by a suitable
index) or for performing the classification task (e.g. toxic vs.
non-toxic), were handcrafted; they were subsequently
computed ab initio, and used as variables of models that
were trained from the available data. The usual steps of
variable selection and model selection were carried out as
usual.

In order to circumvent the problems related to descriptor
design and selection, methods for performing prediction or
classification directly from a graph representation of the
molecular structure were developed ([1]-[4]). In the present
paper, we focus on graph machines.
A graph machine is a composition of parameterized
functions whose structure reflects the structure of the graph,
so that the value taken by the function, after training,
depends on the graph structure, and possibly on exogenous
data. In the present application, each node of the graph is a
non-H atom, and each edge is a bond between atoms. In
order to take into account multiple bonds, the leaves of the
graph contain the degree of each atom (i.e. the number of
chemical bonds that bind it to the adjacent atoms); the
leaves also contain a label that indicates the nature of the
atom (i.e. carbon, oxygen, nitrogen…), in one-out-of-N code
and possibly additional data such as stereochemical
information.

Figure 1

From a planar representation to a directed acyclic graph,
with deletion of an edge and choice of a central node (large

dot)

In order to handle acyclic graphs only, a minimum
number of bonds are deleted if necessary, but the
information about the existence of the deleted bonds is
retained in the degrees of the adjacent nodes, present in the
labels. In addition, a central node is selected [5].

Figure 1 illustrates the steps that create the structure of a
graph machine. The starting point is the description of the
molecule of interest in a standard text format for describing
molecular structures called SMILES (Simplified Molecular
Input Line Entry Specification). It provides the planar
representation, which is turned into an undirected, cyclic or
acyclic, graph with appropriately labeled nodes. After
deletion of edges and selection of the central node, a
directed acyclic graph is constructed, where all paths in the
graph end at the central node.

The final step of the construction of the model consists
in postulating a parameterized function (termed node
function), and implementing it at each node of the graph.
The output of a node function is one of the inputs of the
functions of the nodes to which it is linked by an edge of the
graph; since all paths of the graph terminate at the central
node, the output of that node (also termed output node) is
the output of the graph machine. Node functions may be
polynomials, neural networks, radial basis functions, etc. All
non-output node functions are identical within a graph
machine and in all graph machines of the database; the
output node function may be different from the other node
functions, but it is the same for all graph machines of the
database. Therefore, the number of parameters to be
estimated during training is the number of parameters of the

postulated node function and of the output node function.
Figure 2 shows the final graph machine of the molecule of
Figure 1; the triangles are the symbols of the node functions.
The variables of each node function are (i) the labels (nature
and degree of the atom of the node, and possibly additional
information) and (ii) the outputs of the node functions that
are connected to it. Because all node functions are identical,
they must have the same number of variables, but all nodes
do not have the same number of incoming edges; therefore,
variables that are not used by a node are set to zero. After
training, the output of the graph machine of a molecule
provides a prediction of the value of the quantity of interest
for that molecule, or, in the case of a classification problem,
the label of the class of the molecule.

Training is performed by minimizing the sum of the
squared prediction errors with respect to the parameters of
the node functions. We denote by θ the vector of parameters
of the postulated node function, by Θ the vector of
parameters of the postulated output node function, and by

gθ,Θ

i the output of the graph machine pertaining to molecule
i of the training set. We denote by yi the measured value of
the quantity of interest for molecule i. Then the cost
function to be minimized with respect to the parameters is:

J θ,Θ() = yi − gθ,Θ

i()2

i=1

N

∑ + λ1 θ + λ2 Θ ,

where λ1 and λ2 are regularization constants, and N is the
size of the training set.

Optimization is performed by any suitable optimization
method (Levenberg-Marquardt, BFGS, conjugate gradient,
etc.). If the postulated node function is a neural network, the
gradient of the cost function can be computed by
backpropagation; the usual weight sharing method
guarantees that all node functions are identical.

Complexity selection can be performed by standard
hold-out, cross-validation, leave-one-out, or virtual leave-
one-out (a powerful, computationally efficient nonlinear
extension of the PRESS statistic [6], [7]).
Despite the similarity of the training and model selection
methods of graph machines to those of standard machine
learning regression methods such as neural networks or
support vector regression, the concept is different in
important respects. Standard regression methods use a single
parameterized function, whose parameters are estimated
from N input-output pairs. By contrast, the training set of
graph machines comprises N different parameterized
functions, with shared parameters that are estimated from N
structure-output pairs. Therefore, the computational
structures required for graph machines are different from
those of standard nonlinear regression.

Figure 2

Graph machine based on the directed acyclic graph shown on Figure 1. The triangles depict the node function (e.g. a neural
network). The nature of the non-H atoms (here C, N and O) is encoded in a 1-out-of-3 code; the thick line on one of the

inputs expresses the fact that there are actually three (binary) inputs. The maximum number of incoming edges to a node of
the acyclic graph of Figure 1 is three (at the central node), there are three different atoms, and one label is necessary for the

degree, so that each node function has seven variables. No additional stereochemical descriptor is required for that molecule.

3. COMPUTATIONAL STRUCTURE

FOR GRAPH MACHINES

One of the key issues in the implementation of graph
machines is the complexity. Each molecule in the database
is encoded into a composition of nonlinear functions whose
numbers is equal to the number of non-H atoms of the
molecule; the number of parameters depends on the number
of labels and on the complexity of the node function,
typically a few tens of parameters. Since the parameters are
shared within each graph machine and across all graph
machines, the number of parameters is much smaller than
might be expected in view of the number of elementary
functions (monomials for polynomial nodes, hidden neurons
in the case of neural network node). As a result, the
computational complexity is not, as is usually the case, in
the optimization algorithm, but actually in the computation
of the outputs of the functions and of the first order
derivatives of these outputs with respect to the parameters.
Therefore, the scalability of the graph machine technique is
highly dependent on the technology used for internal
computations.

Our choice is based on the "just in time" computation
(JIT) and its implementation in the recent versions of the
Python language. As mentioned above, a graph machine is a
composition of node functions. For each of them, we create
"on the fly" a set of optimized C-coded files describing the
computation of the functions of interest for training

(computation of the graph machine output and computation
of its derivatives with respect to the parameters); these files
are compiled, also "on the fly", into object files (Figure 3).

This results in a set of object files, one for each graph of
the database. These files are linked together (with a
negligible computational overhead) to create a binary library
that can compute a vector of outputs and a jacobian matrix
for a given set of parameters (Figure 4). The key factor in
the reduction of computation time is the fact that the code
generated from the model structure, and compiled “on the
fly”, is fully dedicated to the model of interest, hence very
simple. By contrast, conventional implementations use
general-purpose codes, which are more flexible but more
computationally demanding – a situation similar to custom
hardware vs. general-purpose circuits. Our approach leads to
a decrease of computation time by two to three orders of
magnitude, as illustrated in the next section.

4. ILLUSTRATIONS

The above methods are illustrated by the prediction of two
physico-chemical properties: the stability constant of
chelates used as contrast agent in Magnetic Resonance
Imaging, and the octanol-water partition coefficient of
organic molecules.

Figure 3

From graph to object file, “just in time” computation.

Figure 4

Linking object files to build a binary module.

4.1. Prediction of the stability constants of gadolinium
chelates.

Magnetic Resonance Imaging (MRI) is a widely used, non-
invasive technique in medical imaging and biomedical
research. One of its main advantages over X-ray imaging is
its applicability to the study of soft tissues, while X-ray are
useful for examining bone conditions, as X-rays are strongly
absorbed by bones. In order to improve the contrast between
normal and diseased tissues in MRI images, it is customary
to inject paramagnetic substances. Among them, gadolinium
(Gd) in its ionic form Gd3+ is the most frequently used [8].
Unfortunately, free Gd3+ is toxic, so that it is necessary to
sequester it into a molecular cage (the ligand) by forming
strong bonds between the active cation and the ligand; the
metal-ligand complex thus formed is a chelate, which must
remain stable in the body and be excreted intact. Figure 5

Figure 5

3-D (left) and planar (right) structures of a typical chelate;
red spheres: oxygen atoms; blue: nitrogen atoms; grey:

carbon atoms; green: chelated Gd3+ ion.

shows the 3-D structure of a chelate and the 2-D structure of
its ligand; the non covalent bonds between the Gd3+ ion
(green sphere) and the N and O atoms (blue and red
respectively) of the ligand are clearly visible, together with
the O atom of a water molecule (top red sphere).

The higher the thermodynamic stability of a metal
complex used as a pharmaceutical drug, the lower its
toxicity; the thermodynamic stability constant of a
gadolinium(III) complex (Ktherm or KGdL) is useful to assess
the amount of free Gd3+ or free ligand in a water solution.
As the values of the stability constants span several orders
of magnitude, they are almost always expressed in log K
units in publications, databases and handbooks (the same
holds true for the values of the octanol-water partition
coefficient logP, discussed in section 4.2).

A lot of effort is devoted to finding new gadolinium-
based contrast agents with improved performance.
Therefore, it is crucial to develop new contrast agents with
very high stability constants. The rationale for using
machine learning to estimate the stability constant of Gd3+
chelates with yet non synthesized ligands stems from the
fact that the experimental determination of these
thermodynamic constants is long and tedious, so that the
development of a computational predictive method is very
likely to speed up the design of new, efficient ligands.

In an investigation of the prediction of stability constants
of contrast agents for MRI, an exhaustive database of 158
Gd3+ chelates was built [9]. 109 of them were used as a
training/validation set, 12 of them built up the test set, and
37 ligands were used as an application set of molecules with
questionable or yet non-existent experimental values of log
KGdL. Figure 6 shows that the scatter plot of the virtual
leave-one-out predictions on the training set (dots) and on
the test set (squares), together with ±10% prediction RMS
error lines. The prediction error being on the order of the
experimental measurement error, the results are very
satisfactory. A detailed discussion of the chemical
significance of the result is provided in [9].

Graph machine predictions were performed both with a
conventional implementation of graph machines, and with
the implementation described in section 3, on the same

O
N

N

HO

O

NHO

O

N

OH

O

OH

Figure 6

Virtual leave-one-out estimates of log KGdL for the 109
compounds of the training/validation set (●), and estimates
for the 12 compounds of the test set (n), vs. experimental
values of log KGdL. The coefficient of determination R2 has

the same value (within three digits) for both sets. The
regression line for the VLOO estimates and the bisector are

not distinguishable.

 machines. The new implementation resulted in an average
reduction of computation time by a factor of 300.

4.2. Prediction of the octanol-water partition coefficient
of organic molecules.

The octanol-water partition coefficient of a molecule (logP)
is the log of the ratio of its equilibrium concentration in
octanol to its equilibrium concentration in water (water and
octanol are immiscible). Therefore, it describes how
hydrophilic (or hydrophobic) a molecule is: the higher its
hydrophilicity, the lower its logP value; the higher its
hydrophobicity, the higher its logP value. This is a key
figure for pharmaceutical applications, because it is
important in estimating how a drug is distributed in the
body.

A drug that is administered orally must enter the blood
circulation system by passing through the intestinal
epithelium, which requires that the molecule is hydrophobic
enough. In addition, hydrophobic effects are important for
the binding of drugs to their targets. For all the above
reasons, the prediction of logP is of major interest for
computer-aided drug design, and traditional, descriptor-
based machine learning methods have been applied
extensively (for a review, see [10] and references therein).

A database of 1,800 molecules (from 2 to 52 non-H
atoms per molecule) with known values of logP [11] was
used for investigating the scaling of computation times with

the size of the training set, for different numbers of
parameters corresponding to neural network node functions,
with three to seven hidden neurons. All experiments were
performed on a quad-core i7-2600 @3.6 GHz. Figure 7
shows that the computation time necessary for the
construction of the graph machines increases linearly with
the size of the training set in the range investigated.
Similarly, the computation time increases linearly with the
number of parameters, for a given size of the training set. It
must be noted that this computation is performed only once
for a given molecule: if another property of the same
molecule is to be predicted, this step is not repeated. In
addition, if a multicore machine is used, each core may be
assigned a separate set of molecules, as a graph machine is
constructed independently from the others.

By contrast, the graph machines must be trained
specifically for each property. However, the training time is
much smaller than the time required for building the graph
machines. Figure 8 shows the computation time for training
the graph machines by 250 epochs of the Levenberg-
Marquardt algorithm. Linear scaling is observed again.

For molecules of the size and complexity indicated
above, the new implementation divides the construction
time by 1.5 and the training time (node function with 5
hidden neurons, 250 epochs of Levenberg-Marquardt
optimization) by 1,200.

5. CONCLUSION

The results presented here show that graph machines can be
conveniently implemented in an efficient way, so as to be
used on large databases without resorting to high-
performance hardware or grid computing, given the present
size of available databases. However, due to the current
interest in capitalizing as much as possible on publicly
available databases in chemistry will grow more and more
rapidly. Therefore, it is important to find scalable
implementations QSAR/QSPR methods, as illustrated in the
present article.

Interestingly, there is room for a lot of improvement in
computational efficiency, especially with the use of
multicore machines for the construction of the graphs of
molecules, which has become the most time-consuming step
for graph machine prediction if a single property is to be
predicted. If several properties of the same molecule are to
be predicted, the construction of the graphs is performed
only once, which is a particularly attractive feature of graph
machines.

X

X

X

X

X

X

X

X

X

X

X
XX

X

XX

X

X

X

X
X
X

X

X

X

X

X

X

X

X

X

X

X

XX
X

X

X
X

X

X

X

X
X

X

XX
X

XX

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X
X

X

X

XX

X

X

X

XX
X

X

X

X
X

X

X

X

X
XX

X
XXX
X

X

X

X

X
X
X

X

X
XX
XB

B

B

B

B

B

B

B

B

B

B

B

10

12

14

16

18

20

22

24

26

10 12 14 16 18 20 22 24 26

Experimental log KGdL

E
st

im
at

ed
 lo

g
K G

dL

R 2 = 0.92

Figure 7

Computation time vs. number of molecules in the training
set for the construction of graph machines of different node

function complexities (number of parameters).

Figure 8

Training time (Levenberg-Marquardt optimization, 250
epochs) vs. number of molecules in the training set.

6. REFERENCES

[1] A. Micheli, F. Portera, A. Sperduti, “A preliminary
experimental comparison of recursive neural networks and a tree
kernel method for QSAR/QSPR regression tasks”, Proc. ESANN
2004, pp. 293-298, 2004.

 [2] P. Baldi, G. Pollastri, “The Principled Design of Large-Scale
Recursive Neural Network Architectures–DAG-RNNs and the
Protein Structure Prediction Problem”, Journal of Machine
Learning Research, pp. 576-602, 2003.

 [3] A. Goulon, T. Picot, A. Duprat, G. Dreyfus, “Predicting
activities without computing descriptors: graph machines for
QSAR”, SAR QSAR Environ. Res., pp. 141-153 (2007).

 [4] A. Goulon-Sigwalt-Abram, A. Duprat, G. Dreyfus, “From
Hopfield nets to recursive networks to graph machines: numerical

machine learning for structured data”, Theoretical Computer
Science, pp. 298 - 334, 2005.

[5] C. Jochum, J. Gasteiger, “Canonical Numbering and
Constitutional Symmetry”, J. Chem. Inf. Comput. Sci., pp. 113-
117, 1977.

[6] G. Monari, G. Dreyfus, “Local Overfitting Control via
Leverages”, Neural Computation, pp. 1481-1506, 2002

[7] A. Goulon-Sigwalt-Abram, A. Duprat, G. Dreyfus,
Unconventional Computation, Springer, 2006.

[8] G.-P. Yan, L. Robinson, P. Hogg, “Magnetic resonance
imaging contrast agents: Overview and perspectives”,
Radiography, pp. e5-e19, 2007.

[9] F. Dioury, A. Duprat, G. Dreyfus, C. Ferroud, J. Cossy, “QSPR
Prediction of the Stability Constants of Gadolinium(III) Complexes
for MRI”, J. Chem. Inf. Model., accepted for publication, doi:
10.1021/ci500346w, 2014.

[10] J. Taskinen, J. Yliruusi, “Prediction of physicochemical
properties based on neural network modelling”, Advanced Drug
Delivery Reviews, pp. 1163 – 1183, 2003.

[11] C. Hansch, A. Leo, D. Hoekman, “Exploring QSAR,
Hydrophobic, Electronic, and steric Constants; American Chemical
Society: Washington, DC, 1995; Vol. 2.

